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Abstract
A theory describing multiphonon resonant Raman scattering (MPRRS)
processes in wide-gap diluted magnetic semiconductors is presented, with
Cd1−x MnxTe as an example. The incident radiation frequency ωl is taken
above the fundamental absorption region. The photoexcited electron and hole
make real transitions through the LO phonon, when one considers Fröhlich (F)
and deformation potential (DP) interactions. The strong exchange interaction,
typical of these materials, leads to a large spin splitting of the exciton states in
the magnetic field. Neglecting Landau quantization, this Zeeman splitting gives
rise to the formation of eight bands (two conduction and six valence ones) and
ten different exciton states according to the polarization of the incident light.
Explicit expressions for the MPRRS intensity of second and third order, the
indirect creation and annihilation probabilities, the exciton lifetime, and the
probabilities of transition between different exciton states and different types
of exciton as a function of ωl and the external magnetic field are presented. The
selection rules for all hot exciton transitions via exciton–photon interaction and
F and DP exciton–phonon interactions are investigated. The exciton energies,
as a function of B , the Mn concentration x , and the temperature T , are compared
to a theoretical expression. Graphics for creation and annihilation probabilities,
lifetime, and Raman intensity of second and third order are discussed.

1. Introduction

The multiphonon Raman scattering technique has become suitable for the investigation of
both electronic states and their interaction with the longitudinal oscillations of the lattice in
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semiconductors, allowing us to obtain the dispersion law for the phonons over a great range
inside the Brillouin zone. Through measuring the relation of the intensities In+1/In of two
successive lines in the spectrum, one can evaluate the exciton–phonon coupling constant.

In the last few years, a great number of publications have been devoted to studying the
physics of ternary II–VI and III–V semiconductor alloys; this is because of the multiple
applications of these materials in new electronic and optoelectronic devices. In diluted
magnetic or semimagnetic semiconductors, such as the ternary alloy Cd1−x Mnx Te, some
of the cations are randomly replaced by transition-metal ions with permanent magnetic
moments [1, 2]. Local magnetic spin moments of Mn+2 ions arise from the 3d5 electrons and
strongly interact with the electrons or holes in the conduction and valence bands, producing a
variety of significant phenomena in optical processes. The presence of an external magnetic
field leads to extremely large magneto-optical effects such as giant Zeeman splitting of the
excitonic band, large Faraday rotation, giant Stokes shift in spin-flip Raman scattering [1], and
the formation of so-called exciton magnetic polarons [3–5].

In view of the growing interest in diluted magnetic semiconductors (DMS), such
as Cd1−x Mnx Te, and their interesting physical properties, it has become important to
investigate them by different techniques, such as by studying the high-order Raman scattering.
Therefore, it is important to construct a theoretical model for this phenomenon in order
to obtain information, by comparing with the experimental results, about properties such
as the exciton lifetime, the Landé g-factor, and the exchange integral for these interesting
semiconductors.

When light with energy in the region of the fundamental absorption interacts with a polar
semiconductor (especially one of the type II–VI), the scattered light contains a set of lines
differing in energy from that of the incident light, h̄ωl , by an integer number N � 2 times
the energy of an LO phonon. That is, h̄ωs = h̄ωl − Nh̄ωL O , where h̄ωs is the energy of
the scattered photon and h̄ωL O is that of a LO (longitudinal optical) phonon. These results
have been interpreted as multiphonon Raman resonant scattering [6–9]. Recently, MPRRS in
III–VII semiconductors, such as InBr and InI, has been studied. In these materials, electron
and hole effective masses are supposed to have nearly the same value. In this case, a great
number of MPRRS lines with alternating intensity (N-even lines brighter than N-odd ones)
were observed [10–13]. The MPRRS processes involving free electron–hole pairs (without
Coulomb interaction) have also been investigated, in the presence of an external strong magnetic
field with direct creation and indirect annihilation of electron–hole pairs when me �= mh , and
with direct creation and direct annihilation of electron–hole pairs with me �= mh . Additionally,
the second-order Raman scattering for the me = mh case when direct creation and direct
annihilation are allowed has also been investigated [14].

A theory for one-phonon resonant Raman scattering in wide-gap DMS is developed
in [15], where the efficiency of resonant Raman scattering by LO phonons via deformation
potential (DP) and Fröhlich (F) exciton–phonon interaction near the E0-gap in external
magnetic fields in Cd1−x Mnx Te is calculated. At the present time, we do not know of any
theoretical or experimental studies carried out on MPRRS processes in the DMS. The aim of
this work is to investigate MPRRS processes in DMS in the presence of an external magnetic
field, with Cd1−x Mnx Te as an example. The presence of an external magnetic field generates
two conduction bands and six valence bands with ten different types of exciton. The Zeeman
splitting and exciton states are considered in the envelope function approximation using a
parabolic and isotropic model near k = 0 for the conduction and valence bands. Theoretical
expressions for the MPRRS cross-section will be obtained,and selection rules will be discussed
for all exciton transitions by LO phonons via F and DP exciton–phonon interaction. As a
starting point we use the results of the following two references:
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(a) Reference [15], where the absolute Raman scattering efficiency for one-phonon resonant
scattering processes via DP and F exciton–phonon interaction in DMS, with Cd1−x Mnx Te
as an example, has been calculated for photon energies below and above the band gaps
E0 and E0 + �0. In this reference the fundamental properties related to the structure of
bands and transitions allowed for polarization vectors of the incident radiation field in the
DMS are given.

(b) Reference [16], where a theory is developed which describes MPRRS processes in polar
semiconductor with two exciton bands when the incident radiation frequency is above the
fundamental absorption region.

In this work the MPRRS for hot excitons will be generalized in order to allow application
to the DMS; furthermore, the presence of a moderate magnetic field will be considered.
A theoretical model which describes, qualitatively at least, the high-order light scattering
processes in these semiconductors will be constructed. Additionally, we will present the
different probabilities and the lifetimes of hot excitons involved in the process. To do this, we
will take it into account that the intermediate states are real hot excitons coupled with phonons
via the F and the DP interactions.

2. The model for exciton bands in diluted magnetic semiconductors

The main property of the DMS is that the Landau quantization [19] is not observed for magnetic
field B < 10 T. Therefore, it is not necessary to include the magnetic field in the initial
Hamiltonian describing the hot exciton states; that is, it will be enough to consider that the
magnetic field affects the excitonic states through the energy gap.

In this section, we will consider the band model presented in [15], where, considering only
the Zeeman effect (Landau quantization is neglected), the �c

6 conduction band is split into two
bands with spin up, |1/2, 1/2〉, and down, |1/2,−1/2〉. The �v

8 valence bands are split into
four bands, |3/2,±3/2〉 and |3/2,±1/2〉. The �s

7 band is split into two bands, |1/2,±1/2〉.
In the above notation the first number corresponds to the total angular momentum Jα (where
α is e or h) and the second one to the z-component.

The energies of these states, in the mean-field approximation,can be written as follows [17]
(κ = 0):

Ec[Je = 1
2 , Jze = ± 1

2 ] = E0 ± 3Ae,

Ev[Jh = 3
2 , Jzh = ± 3

2 ] = ±3Ah,

Ev[Jh = 3
2 , Jzh = ± 1

2 ] = ±Ah,

Ev[Jh = 1
2 , Jzh = ± 1

2 ] = ∓Ah − �0,

(1)

with Ae and Ah given by

Ae = 1
6 N0xα〈Sz〉B,T , Ah = 1

6 N0xβ〈Sz〉B,T , (2)

where N0 is the number of primitive cells per unit volume, x is the Mn mole fraction and α > 0
and β < 0 are the exchange integrals for the conduction and valence band,respectively. 〈Sz〉B,T

is the average spin polarization of Mn2+ ions in the direction of the applied magnetic field; it
has been found [18] that for B < 10 T, for Cd1−x Mnx Te, this magnitude can be described by
the modified Brillouin function Bs(t) with S = 5/2 (the total spin of 3d5 electrons) as follows:

〈Sz〉B,T = S0 Bs

(
Sµβ gB

kB(T + T0)

)
,

Bs(r) = 2S + 1

2S
coth

(
(2S + 1)

2S
r

)
− 1

2S
coth

(
r

2S

)
,

(3)
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Figure 1. A schematic representation of the band structure without the presence of a magnetic field.
Zeeman-like splitting of the �c

6 conduction and �s
7, �

v
8 valence band states, at k = 0, for a zinc-

blende-type DMS in external magnetic fields are also shown. Transitions allowed for polarization
vectors ê+ (T1, T2, T8) and ê− (T3, T4, T7) are indicated by solid arrows, while those allowed for
the polarization vector π̂ (T5, T6, T9, T10) are shown by dashed arrows.

where S0 and T0 are empirical parameters, µB is the Bohr magneton, and g is the Landé factor
for Mn2+ ions. The variations of T and B allow us to adjust the exciton bands for a given
concentration x of the Mn2+ ions.

In figure 1 we show the Zeeman-like splitting of the �c
6 conduction and �s

7 and �v
8 valence

band states at κ = 0 for zinc-blende-type DMS, with and without external magnetic fields. The
allowed transitions for the polarization vector ê+ (T1, T2, T8) and ê− (T3, T4, T7) are indicated
by solid arrows, and those allowed for the polarization vector π̂ (T5, T6, T9, T10) are shown by
dashed arrows; the polarization vectors are given by

ê+ = 1√
2
(1, i, 0), ê− = 1√

2
(1,−i, 0). (4)

In zinc-blende-type DMS the exchange interaction is diagonal in the basis of the total
angular momentum wavefunctions |J, Jz〉 and does not mix the states with different Jz [15, 19].
The coulombic interaction between electrons and holes leads to the formation of exciton states
downshifted with respect to the threshold interband transitions by the binding energy ER .
For Cd1−x Mnx Te the difference in binding energy is very small for different exciton states
and, neglecting effects of electron–hole exchange, the exciton spin splitting can be written
as algebraic sums of valence and conduction band splittings. Only six exciton transitions
(T1, T2, T3, T4, T7, T8) are allowed in the Faraday configuration [15, 19]. The energies of these
states in the centre of the Brillouin zone and in the internal ground state are

T1 = E0 − �E + 3Ah − 3Ae,

T2 = E0 − �E + Ah + 3Ae,

T8 = E0 + �0 − �E − Ah + 3Ae,

T3 = E0 − �E − Ah − 3Ae,

T4 = E0 − �E − 3Ah + 3Ae,

T7 = E0 + �0 − �E + Ah − 3Ae,

(5)
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where �E = Rp/n2 is the binding energy of the p-exciton for the discrete spectrum; we have
considered the ground state (n = 1).

The first three transitions are allowed in the ê+-polarization and the last three in the
ê−-polarization.

In general, the different excitonic transitions via F exciton–phonon interaction are
intraband transitions for q-excitons in the MPRRS processes. Therefore, the transitions
mediated by F interaction are possible with Z(ê±, ê±)Z̄ scattering configurations. Both
configurations will be taken into account in the calculation of the MPRRS cross-section in
DMS.

3. Exciton–phonon interaction

In DMS there are two types of interaction contributing to the emission of a LO phonon by
an exciton; these are the DP interaction [30] and the F [31] interaction. Both interactions
can produce interband and intraband transitions if the phonon momentum is Q �= 0. The
Hamiltonian for the exciton–phonon interaction for Stokes processes is given by

Ĥeph =
∑

p,ν,K,Q,λ
q,ν′ ,K ′

GKK ′
pν,qν′ (Q)D̂+

q,ν′ ,K ′ D̂p,ν,K b̂+
Q,λ, (6)

where Q is the wavevector of a phonon, λ is the phonon branch, D̂+
q,ν′ ,K ′ (D̂p,ν,K), is the

creation (annihilation) operator for an exciton q (p) with quantum number ν ′ (ν), centre-of-
mass momentum K ′ (K) and energy Eq,ν′(K ′) (Eq,ν(K)), and b̂+

Q,λ is the creation operator
for phonons.

Hereafter we only will take into account the most strongly contributing optical longitudinal
oscillations, considering the resonance condition; that is, the different intermediate states are
resonant. The necessary condition for intermediate excitonic states to be resonant is given by
equation (33).

The exciton-coupling constant of the exciton–phonon interaction can be expressed as [15]

GKK ′
pν,qν′ (Q) = {〈cq |δφ(λ)|cp〉δvq ,vp Ipν,qν′ (−Qh,p)

− 〈vp|δφ(λ)|vq〉δcq ,cp Ipν,qν′ [ 1
2 (Qe,p + Qe,q)]}δK,K ′+Q (7)

where

Qe,p = me

me + mh,p
Qap, Qh,p = mh,p

me + mh,p
Qap; (8)

where ap is the p-exciton Bohr radius, Ipν,qν′ (Q) is equal to

Ipν,qν′ (Q) =
∫

d3r �∗
q,ν′ (r)eiQ·r�p,ν(r) (9)

and

δφ(λ) = δφ
(λ)
DP + δφ

(λ)
F δλ,L O (10)

with subscript λ standing for subscripts LO, TO.
In the case of scattering of LO phonons via DP interaction,

δ
(L O)

DP = êL O · u0
∂Vef f

∂urel
, (11)

where êL O is the polarization vector of the LO phonon, ∂Vef f /∂urel is the derivative of the
effective electronic potential Vef f with respect to a relative sublattice displacement urel . The
zero-point relative displacement amplitude u0 is

u0 =
(

h̄Vc

2V M∗ω0

)
, (12)
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where Vc is the volume of the primitive cell, M∗ is the reduced mass of the atoms contributing
to the optical mode, ω0 is the phonon frequency, and V is the volume of the crystal.

For the F exciton–phonon interaction we obtain

δ
(L O)
F = 1√

V

CF

Q
êL O · Q; (13)

where CF is the F constant, given by

CF = −i
√

2π h̄ω0e2(ε−1∞ − ε−1
0 ); (14)

e is the free electron charge and ε∞ and ε0 are the high-frequency and the static dielectric
constants, respectively.

In order to evaluate the integral Ipν,qν′ (Q) for discrete–discrete transitions we use the
wavefunctions with angular momentum l = 0 for two different excitons, given by [29]

�p,ν(r) = 1

(πν3a3
p)

1/2
exp

(
− r

νap

)
F

(
1 − ν, 2,

2r

νap

)
(15)

and

�q,ν′ (r) = 1

(πν ′3a3
q)

1/2
exp

(
− r

ν ′aq

)
F

(
1 − ν ′, 2,

2r

ν ′aq

)
, (16)

where F is the confluent hypergeometric function.
After very cumbersome calculations we obtain

Ipν,qν′ (Q) =
4(−1)ν

′−1(ν ′ν fqp)
3/2 F(1 − ν ′, 1 − ν, 2,

−4ν′ν fqp

(ν−ν′ fqp)2+Q′2 )

Q′[(ν − ν ′ fqp)2 + Q′2][(ν + ν ′ fqp)2 + Q′2]ν′+ν
Im{[ν2 − (ν ′ fqp)

2

− Q′(Q′ − 2iν)]ν
′
[ν2 − (ν ′ fqp)

2 + Q′(Q′ − 2iν ′)]ν} (17)

where fqp = aq/ap and Q′ = νν ′aqµqα Q, where µqα is the reduced mass of exciton q .
Expanding the imaginary term and keeping only the lower powers of Q′ in this expansion,

we get

Ipν,qν′ (Q) ≈ 8(−1)ν
′
(ν ′ν)5/2 f 3/2

qp [( fqp − 1)(ν2 − (ν ′ fqp)
2) − ( fqp + 1)Q′2]

× [ν2 − (ν ′ fqp)
2 − Q′2]ν

′−1[ν2 − (ν ′ fqp)
2 + Q′2]ν−1

[(ν − ν ′ fqp)2 + Q′2][(ν + ν ′ fqp)2 + Q′2]

× F

[
1 − ν ′, 1 − ν, 2,

−4ν ′ν fqp

(ν − ν ′ fqp)2 + Q′2

]
. (18)

Then, taking the limit Q → 0, this expression reduces to equation (15) of [30] for the
exciton transition between q- and p-bands via the DP exciton–phonon interaction, and for
fqp ≈ 1 the expression reduces to equation (15) of [31] for exciton transitions between states
of the same exciton via the F exciton–phonon interaction.

For the discrete–continuous transition the matrix element Ipν,qν′ (Q) is given by
equation (17) of [31].

4. Selection rules

In order to carry out a more effective analysis of the different processes taking place in the
multiphonon Raman scattering, it is necessary to obtain some selection rules, which allow the
study of electronic states, phonons, and their interaction. Following the considerations above,
it is possible to express the scattering process using the diagram given as figure 1, where the
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allowed and forbidden transitions for different scattering configurations are clearly shown; a
particular incident and emitted light polarization is considered.

The wavefunctions for conduction and valence bands, with J = 3/2 for �v
8 , and J = 1/2

for �c
6 and �s

7, can be represented as [21]

c+ = | 1
2 , + 1

2 〉 = |S↑〉, c− = | 1
2 ,− 1

2 〉 = |S↓〉, (19)

v+
hh =

∣∣∣∣3

2
, +

3

2

〉
= 1√

2
|(X + iY )↑〉, v−

hh =
∣∣∣∣3

2
,−3

2

〉
= 1√

2
|(X − iY )↓〉, (20)

v+
lh =

∣∣∣∣3

2
, +

1

2

〉
= 1√

6
|(X + iY )↓ − 2Z↑〉, v−

lh =
∣∣∣∣3

2
,−1

2

〉
= 1√

6
|(X − iY )↑ + 2Z↓〉,

(21)

v+
so =

∣∣∣∣1

2
, +

1

2

〉
= 1√

3
|(X + iY )↓ + Z↑〉, v−

so =
∣∣∣∣1

2
,−1

2

〉
= 1√

3
|(X − iY )↑ − Z↓〉,

(22)

where ↑ (↓) denotes spin ‘up’ (‘down’) for the band wavefunction.
For circularly polarized light (Faraday configuration, B ‖ κl ‖ z) the optical interband

transitions allowed for incident light with the polarization vector

êl = ê± = êx ± iêy√
2

(23)

are given by the matrix element 〈c|êl · p̂l |v〉 �= 0. These allowed transitions are indicated by a
solid line in figure 1. These selection rules allow only certain excitons to be excited, according
to the polarization of the incident radiation. The different excitonic branches are very far apart
in energy if the applied magnetic field is strong enough. In subsequent parts of this work we
will keep in mind the results obtained in this section and will show how the scattering spectra
change from one case to another.

Raman processes via DP exciton–phonon interaction are possible in the two scattering
configurations Z̄(ê+, ê−)Z and Z̄(ê−, ê+)Z , and the following selection rules are
obtained [22]:

�Jz = Jzq − Jzp = ±2 (24)

(+2 for Z̄(ê−, ê+)Z and −2 for Z̄(ê+, ê−)Z ).
The coupling constant of the exciton–phonon interaction GKK ′

pν,qν′ (Q) is equal to zero if
vq �= vp and cq �= cp in equation (7). From figure 1 we can observe that exciton transitions
with vq = vp and cq = cp do not exist. We are only interested in the cases where vq = vp

with cq �= cp and vq �= vp with cq = cp. In figure 1 we can also observe that exciton
transitions between excitonic bands with the same valence bands and different conduction
bands for polarizations ê+ and ê− in the Faraday configuration do not exist; therefore, only
the transitions T10,8, T9,7, T6,3, and T5,2, which are mixed between polarizations ê± and π̂, are
possible. Thus, in the Faraday configuration the matrix element 〈cq |δφ|cp〉 = 0 if cq �= cp.

We can also to observe in figure 1 that in the case when vq �= vp with cq = cp, the allowed
transitions in the Faraday configuration for DP interactions are T3,1, T4,2, T7,1, T7,3, T8,2, T8,4;
however, the transitions T7,3 and T8,2 are forbidden because �Jz = 0 in these transitions. In
the polarizations π̂ and ê± mixed with π̂, the allowed transitions are T10,7, T10,5, T10,3, T10,1,
T9,8, T9,6, T9,4, T9,2, and T8,6.

Considering LO phonons interacting via DP interaction just in the Faraday configuration,
we can introduce the following definition:

Tp,q = 〈vq |δφ(L O)

DP |vp〉 = êL O · 〈vq |u0
∂Vef f

∂urel
|vp〉, (25)
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and using the Bloch functions corresponding to the valence bands given in equations ((20)–
(22)), the only nonzero values for the exciton transitions p → q are

T3,1 = −T1,3 = T4,2 = −T2,4 = i

2

u0

a0
Dopt

T7,1 = −T1,7 = T8,4 = −T4,8 = i

2

u0

a0
Dopt

√
2

(26)

where a0 is the lattice constant and is Dopt the optical DP, which is given by

Dopt = 2a0√
3
〈X |∂Vef f

∂uz
|Y 〉. (27)

It has been demonstrated that the DP is important only in processes of first order with
Q → 0.

In the case of LO phonons interacting via F exciton–phonon interaction, the interband
contributions are of second order and can be neglected in the calculation of the exciton
distribution function; therefore, the only allowed excitonic transitions are those between
different internal states of the same excitonic band. Thus, we can define

Tp,q = 〈cq |δφ(L O)
F |cp〉 = 1√

V

CF

Q
êL O · 〈cq |Q|cp〉 = 1√

V

CF

Q
δcq ,cp

Tp,q = 〈vq |δφ(L O)
F |vp〉 = 1√

V

CF

Q
êL O · 〈vq |Q|vp〉 = 1√

V

CF

Q
δvq ,vp .

(28)

From these results we can conclude that the F exciton–phonon interaction is totally
intraband, between the same q-exciton states, and it is only allowed in the Z̄(ê+, ê+)Z and
Z̄(ê−, ê−)Z scattering configurations. In the same way, the DP exciton–phonon interaction
is of interband nature, between q- and p-excitons, and it is only possible in the scattering
configurations Z̄(ê+, ê−)Z and Z̄(ê−, ê+)Z .

5. Theory of multiphonon resonant Raman scattering in diluted magnetic
semiconductors

The purpose of this section is to clarify the different roles of hot exciton transitions and
their main contribution to the N-process Raman scattering cross-section. These results will
be applied in studying MPRRS processes in wide-gap DMS, where the excitonic transitions
are mediated by F exciton–phonon interaction and DP exciton–phonon interaction, and where
transitions between different types of exciton (q and p) in the different scattering configurations
are possible.

5.1. The differential cross-section

The excitonic transitions of the DMS with the emission of a LO phonon, under resonance
conditions, can be considered as real transitions. In this approximation, the different steps of
a process of N th order can be characterized by a P(E) function of distribution of the exciton
energy. Supposing the previous hypothesis to be valid, the MPRRS process cross-section for
an indirectly created q-exciton can be written in the form [20]

d2σq

d� dωs
= V 2

0 ω2
s η(ωs)

8π3c4η(ωl)
Wr (ωs), (29)

where V0 is the crystal volume, η(ω) is the refractive index of light, c is the velocity of light in
the vacuum, and Wr is the probability per unit time, per unit solid angle, of the emission of a



Multiphonon resonant Raman scattering in the semimagnetic semiconductor Cd1−x Mnx Te 3233

Figure 2. Exciton energies versus magnetic field magnitude B , at k = 0, at T = 5 K and for Mn
concentrations x = 0.05. The solid curves are the experimental results obtained from reflectivity
data in ê+- and ê−-polarizations for T1- and T2-transitions (taken from [19]). The dashed curves
are the corresponding theoretical results calculated from equation (32).

photon of frequency ωs by a q- or p-exciton in the ν-state when a primary radiation quantum
h̄ωl is absorbed by the crystal, creating a q-exciton in the ν-state. This probability is given by

Wr (ωs) =
∑

ν

∫
Prν(E)W l

rν(E, ωs) dE, (30)

where r represents the q- or p-exciton if the cascade relaxation is intraband (F exciton–phonon
interaction) or interband (DP exciton–phonon interaction), when the hot excitons are formed
by indirect creation in the q-excitonic band, taking into account the light polarization and
scattering configuration. ν represents the set of quantum numbers of the exciton, characterized
by an energy Eq,ν (K) equal to

Eq,ν (K) = Eq(B, T ) − �Eq,ν +
h̄2 K 2

2mqT
, (31)

where Eq(B, T ) is the effective energy gap corresponding to the q-exciton and is equal to

Eq(B, T ) = E0 + �0δJh,1/2 + 2[3Jze Ae(B, T ) − (−1)(2Jh+1)/2 Jzh Ah(B, T )], (32)

and mqT = me +mqh is its total mass. For the discrete spectrum we obtain �Eq,v = Rq/n2 and
for the continuum one �Eq,kin = −Rqk2 = −Rq(aqkin)

2, where Rq is the exciton Rydberg,
aq its Bohr radius, and kin = (mhke − mekh)/mT its internal wavevector. Pqv(E) dE is the
number of excitons with energies within the interval (E, E+dE), and Wl

rv(E, ωs) is the indirect
annihilation probability, per unit time and per solid angle, due to simultaneous emission of an
h̄ω0 phonon and an h̄ωs photon for a q- or p-exciton in the internal state ν. n characterizes
the internal state of the excitons (the main quantum number).

Figure 2 shows exciton energies obtained from reflectivity data as a function of the
magnetic field [19]. Comparing these experimental results and equation (32) we can observe
that the effect of the magnetic field, for moderate values, B < 10 T, can be considered as just as
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a gap variation; i.e. the magnetic field intensity is not enough to produce Landau quantization.
The Landé factors used to adjust the theoretical curve with the experimental data are 0.5 for
electrons, 1.0 for heavy holes, and 0.5 for light holes.

We consider Cd1−x Mnx Te as the ternary polar direct gap semiconductor below the Debye
temperature where the exciting radiation frequency ωl obeys the following condition:

h̄ωl > Eq(B, T ) − �Eq,ν + Nh̄ω0; N = 2, 3, . . .. (33)

5.2. Hot exciton distribution function balance equations

From equation (30) we can see that in order to calculate the differential scattering cross-
section we need to know the indirect creation probability and the Prν(E) distribution function
for each excitonic branch present in the system. A simple estimate for Prν(E) can be obtained
by proving the validity of the balance equation hypothesis. For an isotropic Prν(E) exciton
distribution, in which there exist ten exciton bands, the Boltzmann equation is given by

∂ Prν

∂ t
=

∑
p

{∑
ν′

∫
Ppν′ (E ′)Wpν′→qν(E ′, E) dE ′

−
∑
ν′

∫
Pqν(E)Wqν→pν′ (E, E ′) dE ′

}
+ W ex

qν δ(E − Eon) (34)

where Wpν′→qν(E ′, E) dE is the rate of transitions induced by phonon coupling between the
p-exciton in the internal state ν ′ (p = q with ν ′ �= ν is included (F exciton–phonon interaction))
and the q-exciton in the internal state ν (ν ′ = ν is allowed for p �= q (DP exciton–phonon
interaction)). W ex

qν is the indirect exciton creation probability for one of the ten excitons
indicated in figure 1; we have taken into account the polarization of the light that illuminates
the crystal. E0n = h̄ωl − Eqν(B, T ) − h̄ω0 + Rq/n2 is the initial kinetic energy of the exciton
produced by the incident photon.

The first term on the right-hand side of equation (34) represents all the contributions per
unit time due to the q-exciton in the ν-state, with kinetic energy E , and conversely for the
second term.

In the stationary case, ∂ Prν/∂ t = 0, and it is clear that∑
p

∑
ν′

∫
Wqν→pν′ (E, E ′) dE ′ = γqν(E), (35)

where γqν(E) is the generalized exciton reciprocal lifetime, which includes all the excitonic
contributions due to the same hot exciton and different types of exciton.

In DMS, when the exciton kinetic energy exceeds h̄ω0, the transition probability
Wqν→pν′ (E, E ′) is basically determined by F exciton–LO phonon interaction (F) and DP
exciton–LO and TO phonon interaction (DP). Then, Wqν→pν′ (E, E ′) is given by

Wqν→pν′ (E, E ′) = Wqν→pν′ (E ′)δ
(

E ′ − Rp

n′2 − E +
Rq

n2
− h̄ω0

)
, (36)

where Wqν→pν′ (E ′) is the probability of transition per unit time for the p-exciton in the ν-state,
with kinetic energy E , due to the emission of an h̄ω0 phonon.

Using equations (35) and (36), equation (34) can be written as

Pqν(E)γqν(E) =
∑

p

∑
ν′

∫
Ppν′(E ′)Wpν′→qν(E ′)

× δ

(
E ′ − Rp

n′2 − E +
Rq

n2
− h̄ω0

)
dE ′ + W ex

qν δ(E − Eon). (37)
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This equation represents an inhomogeneous system of integral equations whose solution
is found by successive iteration (see (16)). The general solution for the (N +1)-phonon process
takes the following form:

PqνN (E) = δ(E + (N − 1)h̄ω0 − E0nN )

γqνN (E0nN − (N − 1)h̄ω0)
W ex

qν1

×
∑

p

{ ∑
ν1,...,νN−1

N−1∏
j=1

[
Wpν j →qν j +1(E0n j − ( j − 1)h̄ω0)

γpn j (E0n j − ( j − 1)h̄ω0)

]}
(38)

with

E0nN − Nh̄ω0 < E < E0nN − (N − 1)h̄ω0. (39)

The above expression contains all the possible contributions to the exciton distribution
function for the q-exciton in any ν-state,with kinetic energy E . It has the necessary information
for the (N + 1)-phonon process in DMS if the relation E0nN > (N − 1)h̄ω0 is satisfied.

Using equations (29), (30), and (38), the differential scattering cross-section for an
N-phonon process in the q-exciton band, with the participation of p-exciton bands, is given
by

d2σ Nω0
q

d� dωs
= V 2

0 ω2
s η(ωs)

(2π)3c4η(ωl)
W ex

qν1

∑
p

{ ∑
ν1,...,νN−1

N−2∏
j=1

[
Wpν j →qν j +1(E0n j −( j − 1)h̄ω0)

γpn j (E0n j − ( j − 1)h̄ω0)

]}

× W l
rνN−1

(E0nN−1 − (N − 2)h̄ω0, ωs)

γrνN−1(E0nN−1 − (N − 2)h̄ω0, ωs)
. (40)

The above expression contains all the information related to the cascade relaxation of
the excitons in the q-band with the N − 1 successively emitted phonons and a subsequent
indirect annihilation with the emission of the last phonon in the DMS, if the condition
h̄ωl − Eqν(B, T ) + Rq/n2 > Nh̄ω0 is fulfilled.

If we do not take into account the selection rules for the light polarization vector, the
general total differential cross-section for a MPRRS process in DMS is given by

d2σ Nω0

d� dωs
=

10∑
q=1

d2σ Nω0
q

d� dωs
. (41)

6. The differential scattering cross-section in DMS

In DMS the hole effective mass is much greater than the electron effective mass, mh � me;
therefore, the indirect creation and annihilation of a hot q-exciton occurs in the 1s state [16].
We will also consider the approximation in which the wavevector of the DP phonons is zero,
QDP = 0, and the Faraday configuration for the incident photon. Therefore, the hot excitons
can only be indirectly created by F phonons and can be indirectly annihilated, via F phonons,
or directly, via DP phonons. In our analysis we will only consider the following cases:

(i) First a hot q-exciton in the ground state n = 1, with quasi-momentum h̄k �= 0, is indirectly
created by absorption of a photon of energy h̄ωl , taking into account the polarization of
the light; an F phonon of frequency ωL O is simultaneously emitted.

(ii) The hot q-exciton in the 1s state can undergo a cascade relaxation but staying in the
same state, with the emission of F phonons, and we consider all the contributions of other
p-excitons and other internal ν-states of the same q-exciton as the intermediate states. This
cascade relaxation can only be performed in the Z̄(ê+, ê+)Z and Z̄(ê−, ê−)Z scattering
configurations.
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(iii) The q-exciton is indirectly created in the 1s state, emitting a F phonon, and then it makes
transitions to other p-exciton states, emitting a DP phonon in each transition; we have to
take into account the selection rules for the DF exciton phonon interaction. Finally, the
exciton can be indirectly annihilated from the 1s state of the p-exciton band, emitting the
last F phonon. The process is only possible in Z̄(ê+, ê−)Z and Z̄(ê−, ê+)Z scattering
configurations.

(iv) The q-exciton of case (ii) carries out a complete cascade relaxation until the border of
the band is reached, emitting an F phonon in each transition; then it makes transitions
between the borders of the p-excitons emitting a DP phonon in each transition. Finally,
it is directly annihilated. In this case all scattering configurations are possible.

(v) The q-exciton of case (iii) carries out a relaxation by interband transitions, emitting a
DP phonon in each transition; then it undergoes a cascade relaxation in the p-exciton,
emitting an F phonon in each transition. Finally, the p-exciton is annihilated. In this case
all scattering configurations are possible.

There can be other combinations, but we will only consider these cases in our theory.
In case (ii) the general expression for the scattering differential cross-section can be

obtained from equation (40), making ν = (1, 0, 0), p = q , r = q , ω0 = ωF
L O , and eliminating

the sum in P; thus,

d2σ Nω0
q

d� dωs
= V 2

0 ω2
s η(ωs)

8π3c4η(ωl)
W ex

q(1,0,0)

{ ∑
ν1,...,νN−1

N−2∏
j=1

[
Wqν j →qν j +1(E0,1−( j − 1)h̄ωF

L O)

γq(E0,1 − ( j − 1)h̄ωF
L O)

]}

× W l
q(1,0,0)N−1

(E0,1 − (N − 2)h̄ωF
L O , ωs)

γq(1,0,0)N−1(E0,1 − (N − 2)h̄ωF
L O , ωs)

. (42)

In case (iii) the general expression for the scattering differential cross-section is obtained
by making ν = (1, 0, 0), p �= q , r = p, ω0 = ωDP

L O , and it is given by

d2σ Nω0
q

d� dωs
= V 2

0 ω2
s η(ωs)

8π3c4η(ωl)
W ex

q(1,0,0)

∑
p �=q

{ ∑
ν1,...,νN−1

N−2∏
j=1

[
Wpν j →qν j +1(E0,1−( j − 1)h̄ωDP

L O )

γp(E0,1 − ( j − 1)h̄ωDP
L O )

]}

× W l
p(1,0,0)N−1

(E0,1 − (N − 2)h̄ωF
L O, ωs)

γp(1,0,0)N−1(E0,1 − (N − 2)h̄ωF
L O, ωs)

. (43)

In case (iv) it is necessary to add both contributions. However, in the latter equation the
exciton can be directly annihilated by means of a DP exciton–phonon interaction; this is due
to the exciton being at the border of the bands—it cannot be annihilated emitting an F phonon.

6.1. Scattering cross-sections for two and three phonons

The F phonons are the only contribution to the scattering cross-section for two phonons; in
this case the hot exciton is indirectly created, emitting an F phonon, and then is also indirectly
annihilated, emitting the second phonon (see figure 3(a)). The allowed scattering configuration
for this case is Z̄(ê±, ê±)Z , and the description is

σ 2h̄ωF
L O = A

V0

c′ W ex
q(1,0,0)(Eq0,1)

W l
q(1,0,0)(Eq0,1 − h̄ωF

L O)

γ (Eq0,1 − h̄ωF
L O)

, (44)

where c′ is the speed of light in the crystal and A is a numerical factor depending on the ratio
of the exciton reciprocal lifetime γ to the LO phonon reciprocal lifetime Y .

According to [23], A = 2 when γ /Y � 1, and A = 1 in the opposite case, γ /Y � 1.
For our numerical calculations we have taken the second value.
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(a) (b)

Figure 3. (a) A schematic representation of a process of second and third order, with the emission
of two and three longitudinal optical phonons. The exciton–phonon interaction is considered to
be of F type and only intraband transitions are allowed. (b) A schematic representation where,
after the indirect creation of a q-exciton, emitting a F phonon, there is, due to the DP exciton–
phonon interaction, an interband transition to p-exciton state; finally an indirect annihilation of the
p-exciton occurs, emitting an F phonon.

As we said before, the contributions of different excitonic branches can be far apart,
following the selection rules obtained previously. Thus, for a two-phonon process they are
given as follows:

(a) Circular polarization of incident light, ê+, with B ‖ ẑ:

σ
2h̄ωF

L O

ê+
= σ

2h̄ωF
L O

1 + σ
2h̄ωF

L O
2 + σ

2h̄ωF
L O

8 . (45)

(b) Circular polarization of incident light, ê−, with B ‖ ẑ:

σ
2h̄ωF

L O

�̂e−
= σ

2h̄ωF
L O

3 + σ
2h̄ωF

L O
4 + σ

2h̄ωF
L O

7 . (46)

(c) Linear polarization of incident light, π̂, B ‖ ẑ:

σ
2h̄ωF

L O

π̂
= σ

2h̄ωF
L O

5 + σ
2h̄ωF

L O
6 + σ

2h̄ωF
L O

9 + σ
2h̄ωF

L O
10 . (47)

In the case of the scattering cross-section for three phonons, both F and DP phonons
contribute. The hot exciton is indirectly created, emitting an F phonon, and then it makes an
intraband transition via F hot exciton–phonon interaction (see figure 3(a)), or an interband
transition via DP hot exciton–phonon interaction (see figure 3(b)). Finally, the exciton
is indirectly annihilated, emitting the second F phonon (we only consider these cases).
The allowed scattering configurations in this case are Z̄(ê±, ê±)Z , for F interaction, and
Z̄(ê±, ê∓)Z , for DP interaction. The corresponding expressions are

σ 3h̄ωF
L O = A

V0

c′ W ex
q(1,0,0)(Eq0,1)

Ws1(Eq0,1 − h̄ωF
L O)

γ (Eq0,1 − h̄ωF
L O)

W l
q(1,0,0)(Eq0,1 − 2h̄ωF

L O)

γ (Eq0,1 − 2h̄ωF
L O)

(48)
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for intraband transitions via F hot exciton–phonon interaction, and

σ 2h̄ωF
L O +h̄ωD P

L O = A
V0

c′ W ex
q(1,0,0)(Eq0,1)

Wqp1(Eq0,1 − h̄ωDP
L O )

γ (Eq0,1 − h̄ωDP
L O )

W l
p(1,0,0)(Eq0,1 − h̄ωF

L O − h̄ωDP
L O )

γ (Eq0,1 − h̄ωF
L O − h̄ωDP

L O )

(49)

for interband transitions via DP hot exciton–phonon interaction.
Taking into account the previous selection rules, the scattering configurations for three-

phonon processes are Z̄(ê±, ê±)Z ; the corresponding expressions are as follows:

(a) Circular polarization of incident light, ê+, with B ‖ ẑ:

σ
3h̄ωF

L O

ê+
= σ

3h̄ωF
L O

1 + σ
3h̄ωF

L O
2 + σ

3h̄ωF
L O

8 . (50)

(b) Circular polarization of incident light, ê−, with B ‖ ẑ:

σ
3h̄ωF

L O

ê− = σ
3h̄ωF

L O
3 + σ

3h̄ωF
L O

4 + σ
3h̄ωF

L O
7 . (51)

(c) Linear polarization of incident light, π̂,B ‖ ẑ:

σ
3h̄ωF

L O

π̂
= σ

3h̄ωF
L O

5 + σ
3h̄ωF

L O
6 + σ

3h̄ωF
L O

9 + σ
3h̄ωF

L O
10 . (52)

If we only consider the Faraday configuration and the Stokes process for three-phonon
MPRRS, we find that only the transitions T1,3, T2,4, and T1,7 contribute for the scattering
configuration Z̄(ê+, ê−)Z . We also find that only the T4,8-transition contributes to the
Z̄(ê−, ê+)Z scattering configuration. To establish this we must take into account the selection
rules for DP hot exciton–phonon interaction. These contributions are given by as follows:

(a) The scattering configuration Z̄(ê+, ê−)Z :

σ 2h̄ωF
L O +h̄ωD P

L O = σ
2h̄ωF

L O +h̄ωD P
L O

1,3 + σ
2h̄ωF

L O +h̄ωD P
L O

2,4 + σ
2h̄ωF

L O +h̄ωD P
L O

1,7 . (53)

(b) The scattering configuration Z̄(ê−, ê+)Z :

σ 2h̄ωF
L O +h̄ωD P

L O = σ
2h̄ωF

L O +h̄ωD P
L O

4,8 . (54)

In order to calculate the scattering cross-section by using equations (45)–(47) and (50)–
(52), as well as its dependence on frequency and magnetic field, we need to know the total
lifetime and transition probabilities of the hot exciton in a ν-state, with kinetic energy E ,
involved in the process. These magnitudes were already calculated, for E > h̄ωL O , in [24–
26]. There it was considered that transitions are mediated by an F phonon and that the width
of the energy level En is equal to zero. In our numerical calculations we have generalized the
earlier formulae to include some width of the energy level En and the magnetic field. In order to
simplify the results, we do not consider the probabilities of transitions via DP exciton–phonon
interaction.

6.2. The probability of indirect creation and annihilation of a hot exciton in the ν = 1 state;
Fröhlich interaction

The indirect creation of a q-exciton at the � point of the Brillouin zone, below the Debye
temperature, has the following stages:

(a) absorption of a photon with energy h̄ωl and creation of an exciton in a state ν ′ with
momentum h̄k = 0 (virtual state);

(b) exciton transition from the ν ′-state to the state ν = 1, with momentum h̄k �= 0 (real state)
and simultaneous emission of an F LO phonon with wavevector Q ≈ −k.
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The probability per unit time of this process is

W exc
q(1,0,0) = 2π

h̄

∑
f

∣∣∣∣∑
ν′

〈 f |Ĥexc−ph|0, ν ′〉〈ν ′, 0|Ĥe−l |i〉
Ei − Eqν′ + iδ

∣∣∣∣
2

δ(E f − Ei), (55)

where Ei = h̄ωl , E f = h̄ωL O + h̄2k2/(2mqT ) + Eqν and
∑

ν′ denotes a sum over the complete
set of discrete and continuous Wannier–Mott exciton states, with Eqν′ previously defined for
the discrete and continuous spectra.

Ĥe−l is the electron–photon interaction operator. It has been shown [27] that the matrix
element 〈ν ′, 0|He−1|i〉, for the allowed direct transition, can be expressed in a simple form in
terms of the exciton wavefunction:

〈ν ′, 0|He−1|i〉 = − e

m0

(
2π h̄

ωlε∞

)1/2

êl · p̂cvψν′ (0), (56)

where e and m0 are the free electron charge and mass, respectively, ε∞ is the high-frequency
permittivity, êl is the photon polarization vector, p̂cv is the interband matrix element for the
electron momentum, and ψν′ (r) is the wavefunction of the exciton internal state.

Then, the probability of exciton creation in the ground state ν = 1, taking into account
both contributions discrete and continuous spectra, is

W exc
q(1,0,0)(Z1) =

√
2

2

√
Z1 − 1 +

√
(Z1 − 1)2 + �2

(Z1 − 1)2 + �2

�q

(Z1 +
Eq1

h̄ωL O
)

{∣∣∣∣
4∑

ν′=1

25

ν ′3(Zν′ + i δ
h̄ωL O

)

×
(

fν′ (y2)[
y2 + ( ν′+1

ν′ )2
]ν′+1 − fν′ (y1)[

y1 +
(

ν′+1
ν′

)2]ν′+1

)∣∣∣∣
2

+

(
h̄ωL O

�Eq

)2∣∣∣∣ N(y2, t0)

D(y2, t0)
− N(y1, t0)

D(y1, t0)

∣∣∣∣
2

+ 2
h̄ωL O

�Eq
Re

[∣∣∣∣
4∑

ν′=1

25

ν ′3(Zν′ + i δ
h̄ωL O

)

×
(

fν′ (y2)[
y2 + ( ν′+1

ν′ )2
]ν′+1 − fν′ (y1)[

y1 + ( ν′+1
ν′ )2

]ν′+1

)∣∣∣∣
(

N(y2, t0)

D(y2, t0)
− N(y1, t0)

D(y1, t0)

)∗]}
.

(57)

The indirect annihilation of an exciton has the following stages:

(a) transition of the exciton from the ground state, with momentum h̄k �= 0, to a ν ′-state,
with momentum h̄k = 0 (virtual or intermediate state), and simultaneous emission of a
phonon with wavevector Q = k;

(b) direct annihilation of the exciton with emission of a photon of secondary radiation, with
energy h̄ωs .

The initial and final energies of system in this process are, respectively,

Eqi = Eqν(B, T ) − Rq

ν2
+

h̄2k2

2mqT
and E f = h̄ωL O + h̄ωs; (58)

the energy of the intermediate state is Eqv′ = Eqν + h̄ωL O , where Eqν has been previously
defined in discussing the creation probability.
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Considering the finite lifetime, the indirect annihilation probability is found to be

W l
q(1,0,0)(Z) = αqωL O�q

(
Z + Eq

h̄ωL O
− 1

)
Z

{∣∣∣∣
4∑

ν=1

25

ν3(Z − 1 + �Eq

h̄ωL O
( 1

ν2 − 1) + i δ
h̄ωL O

)

×
(

fν(x2)

[x2 + ( ν+1
ν

)2]ν+1
− fν(x1)

[x1 + ( ν+1
ν

)2]ν+1

)∣∣∣∣
2

+

(
h̄ωL O

�Eq

)2∣∣∣∣ N(x2, t)

D(x2, t)
− N(x1, t)

D(x1, t)

∣∣∣∣
2

+ 2
h̄ωL O

�Eq
Re

[ 4∑
ν=1

25

ν3(Z − 1 + �Eq

h̄ωL O
( 1

ν2 − 1) + i δ
h̄ωL O

)

×
(

fν(x2)

[x2 + ( ν+1
ν

)2]ν+1
− fν(x1)

[x1 + ( ν+1
ν

)2]ν+1

)(
N(x2, t)

D(x2, t)
− N(x1, t)

D(x1, t)

)∗]}
. (59)

In both expressions for probabilities the following appear:

f1(y) = 1, f2(y) = y, f3(y) = y2 + 1
3 ( 4

3 )2 y, f4(y) = y3 + 11
8 y2 + 1

4 ( 5
4 )3 y,

Eqν = Eq(B, T ) − �Eq

ν2
, Z0 = h̄ωl − Eq(B, T )

h̄ωL O
, Zν = h̄ωl − Eqν

h̄ωL O
,

Z =
h̄2k2

2mqν

h̄ωL O
= h̄ωl − Eq1 − h̄ωL O + �Ei

h̄ωL O
,

t0 = h̄ωL O

�Eq
Z0, t = h̄ωL O(Z − 1)

�Eq
− 1,

y1 = h̄ωL O

�Eq

me

mqh
(Z1 − 1), y2 = h̄ωL O

�Eq

mqh

me
(Z1 − 1),

x2 = mqhh̄ωL O

me �Eq
Z , x1 = meh̄ωL O

mqh �Eq
Z ,

�q = 4αqωL O

(
�Eq

h̄ωL O

)2
ε0µq

ε∞m2
0

|êl · p̂cv|2
h̄ωL O

,

�q = 21/2ε0ε
1/2
∞

(
�E

m0

)2

µq
|ês · p̂cv|2

(h̄ωL O mqT c2)3/2
,

αq = e2

2h̄ωL Olq
(ε−1

∞ − ε−1
0 ), lq =

(
h̄

2mqT ωL O

)1/2

,

µq = memqh

mqT
, mqT = me + mqh,

as well as the following functions:

D(y, t) =
[

W 2
1 (y, t) − 16

(
δ

�E

)2

y

]
y,

N(y, t) = 4y

√∣∣∣∣t + i
δ

�E

∣∣∣∣
[

W2(y, t) cos
θ

2
+ �2(y, t) sin

θ

2

]
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+
2δ
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√
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[W1(y, t) − 8y] cos

ϕ

2
− �1(y, t) sin

ϕ

2

}

+ i

{
4y

√∣∣∣∣t + i
δ

�E

∣∣∣∣
(

W2(y, t) cos
θ

2
− �2(y, t) sin

θ

2

)

+ 2
√

y(y + 1)

[
(1 − W−(y, t))W1(y, t) cos

ϕ

2

+
√

y

(
4

(
δ

�E

)2

− 2W1(y, t) sin
ϕ

2

)]}
,

where

W1(y, t) = W 2
−(y, t) + 2W+(y, t) +

(
δ

�E

)2

+ 1,

W2(y, t) = (1 − W−(y, t))2 + 4y −
(

δ

�E

)2

,

�1(y, t) = 4(1 − W−(y, t))
√

y,

�2(y, t) = 2(1 − W−(y, t))
δ

�E
, W∓(y, t) = y ∓ t,

θ = tan−1 δ

t �E
,

ϕ =




tan−1 2
√

y

y − 1
if y > 1,

π + tan−1 2
√

y

y − 1
if y < 1,

π

2
if y = 1.

Figures 4 and 5 show the probabilities of exciton creation and annihilation, respectively,
as functions of the incident radiation h̄ωl for several values of the magnetic field B . The
calculations were based on the CdTe parameters [15]:

E0 = 1.607 eV, ā = 60 Å,

Ry = 10.5 meV, Q = 6 × 10−3 Å−1,

�0 = 0.95 eV, me = 0.09 m0,

h̄ωL O = 21 meV, mlh = 0.13 m0,

mhh = 0.72 m0, mso = 0.26 m0,

and the Cd0.8Mn0.2Te parameters [15].

6.3. The lifetime of the hot excitons in the quantum state ν = 1

The total reciprocal lifetime for the q-exciton in the ground state ν = 1, with kinetic energy
E , is defined as

γ (E) = Ws(E) + Wd(E) +
∞∑

ν�2

W (ν)(E), (60)

where W (ν)(E) is the probability of scattering of a q-exciton, accompanied by a transition from
the ν = 1 (ground) state to a ν � 2 (excited) state belonging to the discrete internal energy
spectrum of the same exciton. The expression for

∑∞
ν�2 W (ν)(E) is given in [28] where the F
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Figure 4. The dimensionless probability W ex
q(1,0,0)/�q of exciton indirect creation as a function of

the energy for the ê+- and ê−-polarizations and two values of the magnetic field B .

Hamiltonian in first order of perturbation theory was used. However, we have only considered
the term with ν = 2 in the sum because that term contributes more than others to the transition
probabilities between ν = 1 and ν � 2 states. Wd(E) is the probability of exciton decay
with emission of one LO phonon. A general expression for this probability is given in [26],
where the authors used a wavefunction corresponding to the continuous energy spectrum of
the hydrogen atom to describe the final state; however, in the present work we have used a
wavefunction for the continuous spectrum corresponding to a plane wave. Ws is the intraband
transition probability for the same ν = 1 internal state; i.e., there is no change in the exciton
internal state.

Now we present compact expressions for these probabilities used in the calculations of
the lifetime in this work [26, 28].

The intraband scattering probability Ws in the ν = 1 state is given by

Ws(Z) = αqωL O

2
√

Z
[�β(λ2) − �β(λ1)], (61)

with

�β(λ) =
[

2(1 − 3β)

(1 − β)3
− 1

]
ln

1 + λ

1 + βλ
+

[
1 − 2

(1 − β)2

]
1

1 + λ
+

[
1 − 2β2

(1 − β)2

]

× 1

1 + βλ
+

1

2

[
1

(1 + λ)2
+

1

(1 + βλ)2

]
+

1

3

[
1

(1 + λ)3
+

1

(1 + βλ)3

]
,
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Figure 5. The dimensionless probability Wl
q(1,0,0)/αqωL O�q of the exciton indirect annihilation

as a function of the energy for the ê+- and ê−-polarizations and two values of the magnetic field
B .

where

λ1,2 = 1

4
√

β

h̄ωL O

�Eq

(√
Z ∓ √

Z − 1
)2

, β =
(

mqh

me

)2

.

The probability W (ν) of interband scattering for a q-exciton between ν = 1 and 2 states
is given by

W (1→2)(Z) = −αqωL O

24
√

Z
[R(t2) − R(t1)], (62)

with

R(t) = 1

4A4
+

1

4B4
+

1√
β − 1

1
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+

32

9

1

(
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×
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− 1

A2 B
+
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1 − β

[
1

A2
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32

9

β
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(
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A
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16

9

β

β − 1
ln

B

A

)]}

and

A = t + 9
16 , B = βt + 9

16 ,

t1→2 = 1

4
√

β

h̄ωL O

�Eq

[√
Z ∓

√
Z +

�Eq

h̄ωL O

(
1

22
− 1

)
− 1

]2

.
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Figure 6. The dimensionless lifetime γ/αqωL O of the exciton as a function of the energy for the
ê+- and ê−-polarizations and two values of the magnetic field B .

The decay probability Wd is calculated as the rate of disintegration of q-excitons in the
ν = 1 state to the continuous energy spectrum, and is given by the following expression:

Wd(Z) = αqωL O
24

π
√

Z

∫ λ2

λ1

dq

q

∫ δ(Q)

0
P2 dP

×
∫ 1

−1

{
1

(β Q2 + P2 + 2
√

β P Qr + 1)2
− 1

(βQ2 + p2 − 2
√

β pQr + 1)2

}
dr,

(63)

with

λ1,2 = β−1/4

(
h̄ωL O

�Eq

)1/2[√
Z ∓

√
Z − �Eq

h̄ωL O
− 1

]
,

δ(Q) =
√

β1/2(Q − λ1)(λ2 − Q).

In figure 6 we have shown the reciprocal lifetime as a function of the incident energy h̄ωl

for several values of the magnetic field B .
In order to calculate the cross-section for scattering of two or three phonons via F

exciton–phonon interaction, it is convenient to represent the indirect creation and annihilation
probabilities and the lifetime in forms that allow one to simplify equations (57) and (59), taking
into account the different excitons contributing (see figure 1). Thus, we obtain the following
compact expressions:

W ex
q(1,0,0)(Z1) = �q W ex

q (Z + 1), W l
q(1,0,0)(Z) = αqωL O�q W l

q(Z),

γ (Z) = αqωL Oγq(Z),
(64)
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taking into account that

�q�q = 8e2µ2
q

(
�Eq

m0

)4
ε0

ε
3/2
∞

1

h̄6ωL OmqT c3
|êl · p̂cv × ês · p̂cv|2q

and defining

Pp,q = |êl · p̂cv × ês · p̂cv|2p
|êl · p̂cv × ês · p̂cv|2q

.

Finally, the expressions used for the scattering cross-sections for two and three phonons,
given by equations (64), are as follows:

(a) Circular polarization of incident light, ê+, with B ‖ ẑ:

σ
2h̄ωF

L O

ê+
= A

V0

c

{
W ex

1 (Z)
W l

1(Z − 1)

γ1(Z − 1)
+
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2 (Z)

W l
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8 (Z)

W l
8(Z − 1)

γ8(Z − 1)

}
�1�1,
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c
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+
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)6
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2 (Z)
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+
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)6
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W l
8(Z − 2)

γ8(Z − 2)

]
�1�1.

(b) Circular polarization of incident light, ê−, with B ‖ ẑ:
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ê− = A
V0

c

[
m1T

m3T

(
µ3

µ1

)6

P3,1W ex
3 (Z)

W l
3(Z − 1)

γ3(Z − 1)

+
m1T

m4T

(
µ4

µ1

)6

P4,1W ex
4 (Z)

W l
4(Z − 1)

γ4(Z − 1)

+
m1T

m7T

(
µ7

µ1

)6

P7,1W ex
7 (Z)

W l
7(Z − 1)

γ7(Z − 1)

]
�1�1,

σ
3h̄ωF

L O
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]
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In a similar way, we can obtain the expression for the linear polarization of light, π̂, B ‖ ẑ.

7. Discussion of the results

In the calculations the following values of the parameters were used:

E0 = 1.910 eV, �0 = 0.95 eV,

h̄ωL O = 21 meV, CF = 2.76 × 10−5 eV cm1/2,

me = 0.09 m0, mlh = 0.13 m0,
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Figure 7. The second-order Raman intensity of the exciton as a function of the incident radiation
energy h̄ωl for Z̄(ê+, ê+)Z and Z̄(ê−, ê−)Z scattering configurations with B = 0 and 4 T.

mhh = 0.72 m0, mso = 0.26 m0, T = 2 K,

N0α = 0.22 eV, N0β = −0.88 eV, S0 = 0.7, T0 = 7.3 K.

The data were taken from [15].
In figures 4–8 the exciton indirect creation probability (W ex/�), the exciton indirect

annihilation probability (W l/�), the exciton reciprocal lifetime, and second- and third-order
cross-sections are shown, as functions of the incident energy h̄ωl , for two magnetic field values
(0 and 4 T) and two scattering configurations: Z̄(ê+, ê+)Z and Z̄(ê−, ê−)Z . In all cases, the
behaviour of each of the excitons as displayed by the various curves can be determined by the
ratio, as it is explained in [24, 26] and [28]; the ratio mh/me remains the same. Thus, we focus
our attention on the influence of the magnetic field on the magnitudes cited below.

In order to obtain each of the figures, the following values were used: δT 1 = 0.04 h̄ωL O ,
δT 2 = δT 3 = 0.05 h̄ωL O , δT 4 = 0.07 h̄ωL O , δT 7 = δT 8 = 0.09 h̄ωL O , �T 1 = 0.23,
�T 2 = �T 3 = 0.28, �T 4 = 0.33, �T 7 = �T 8 = 0.57. On the other hand, the following
relations were used too: P2,1 = P3,1 = 1/9, P7,1 = P8,1 = 4/9, P4,1 = 1.

In figure 4, the curves for B = 0 T and the scattering configurations Z̄(ê+, ê+)Z and
Z̄(ê−, ê−)Z have maxima at the energy points h̄ωl = 1.925, 2.881 eV; for B = 4 T and
Z̄(ê+, ê+)Z , at h̄ωl = 1.881, 1.956, 2.902 eV; for B = 4 T and Z̄(ê−, ê−)Z , at h̄ωl = 1.917,
1.968, 2.861 eV. For B = 4 T the maxima corresponding to the energies h̄ωl = 1.881 and
1.968 eV relate to heavy-exciton contributions, h̄ωl = 1.917 and 1.956 eV to the light excitons,
and h̄ωl = 2.861 and 2.902 eV to the split-off excitons. The difference between the intensities
of the exciton contributions can be understood through the ratio of effective masses mh/me

and the lifetime broadenings resulting from them.
The effect of the magnetic field is to move the maxima of the curves with respect to the

B = 0 T cases in both scattering configurations. On the other hand, it can be observed
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Figure 8. The third-order Raman intensity of the exciton as a function of the incident radiation
energy h̄ωl for Z̄(ê+, ê+)Z and Z̄(ê−, ê−)Z scattering configurations with B = 0 and 4 T.

that the maxima positions depend on the scattering configuration selected. The energy
difference between the maxima for the same type of exciton and relating to different scattering
configurations is proportional to B . Thus, it is possible to find the Landé g-factor for each
type of exciton.

In figure 5 the curves corresponding to B = 4 T and the Z̄(ê+, ê+)Z scattering
configuration have maxima values for h̄ωl = 1.908, 1.939, and 2.914 eV; for B = 4 T
and Z̄(ê−, ê−)Z , at h̄ωl = 1.945, 1.985 and 2.873 eV; for B = 0 T and both scattering
configurations, at h̄ωl = 1.942 and 2.894 eV. The values h̄ωl = 1.908 and 1.985 eV correspond
to heavy-exciton contributions, h̄ωl = 1.939 and 1.945 eV to light excitons, h̄ωl = 2.873 and
2.914 eV to split-off excitons.

In the annihilation case, the magnetic field causes the displacements of the points of
maxima values with respect to the B = 0 T case and the scattering configuration. The
difference shown can also be explained by the difference in the ratios of the effective masses
mh/me and the lifetime broadenings for each exciton.

In figure 6 the reciprocal lifetimes (γ /αωL O) are presented as a function of the incident
energy h̄ωl . Similar behaviours for both curves for the reciprocal lifetime are observed for the
two scattering configurations in the B = 0 T case. This is explained through the relation of
the effective masses of holes and electrons mh/me. However, the magnetic field produces a
displacement of the positions of the maxima corresponding to Z̄(ê+, ê+)Z and Z̄(ê−, ê−)Z
scattering configurations and changes of the γ /αωL O values: for Z̄(ê+, ê+)Z the value is 2.61,
while for Z̄(ê−, ê−)Z the value is 2.68.

In figure 7 it can be observed that the curves corresponding to the Z̄(ê+, ê+)Z and
Z̄(ê−, ê−)Z configurations are the same for B = 0 T. As before, when the magnetic field is
applied, displacements of the positions of the maxima corresponding to σ/�1�1 are produced.
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In the scattering configuration Z̄(ê+, ê+)Z , the values are h̄ωl = 1.953 eV for B = 0 T and
h̄ωl = 1.909 and 1.950 eV for B = 4 T; in the Z̄(ê−, ê−)Z configuration, h̄ωl = 1.953 eV
for B = 0 T and h̄ωl = 1.955 and 1.996 eV for B = 4 T. It can be observed that the positions
of the maxima are quasi-symmetric with respect to the B = 0 T case.

In all the previous figures, the most meaningful consequence of the magnetic field is the
displacement of the positions at which the magnitudes analysed take their maxima values. The
reason for this is that the effect of the magnetic field has been taken into account only via the
gap of the material according to equation (8).

In figure 8, the third-order cross-section is presented. Here, we have a situation analogous
to the previous case. However, there is a displacement of the curves of the order of one phonon,
while the magnitude of σ/�1�1 remains the same.

Starting from the spectra of an effective section, we can obtain information about the
characteristic parameters of the material, such as: the characteristic frequencies for which the
material absorbs or emits a photon; the energy gaps; the energy of the optical phonons of the
material; the exciton–phonon coupling constant; and the Landé g-factor.
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